149 research outputs found

    Fast-slow bursters in the unfolding of a high codimension singularity and the ultra-slow transitions of classes

    Full text link
    Bursting is a phenomenon found in a variety of physical and biological systems. For example, in neuroscience, bursting is believed to play a key role in the way information is transferred in the nervous system. In this work, we propose a model that, appropriately tuned, can display several types of bursting behaviors. The model contains two subsystems acting at different timescales. For the fast subsystem we use the planar unfolding of a high codimension singularity. In its bifurcation diagram, we locate paths that underly the right sequence of bifurcations necessary for bursting. The slow subsystem steers the fast one back and forth along these paths leading to bursting behavior. The model is able to produce almost all the classes of bursting predicted for systems with a planar fast subsystems. Transitions between classes can be obtained through an ultra-slow modulation of the model's parameters. A detailed exploration of the parameter space allows predicting possible transitions. This provides a single framework to understand the coexistence of diverse bursting patterns in physical and biological systems or in models.Comment: 22 pages, 15 figure

    Phase-lags in large scale brain synchronization : Methodological considerations and in-silico analysis

    Get PDF
    Architecture of phase relationships among neural oscillations is central for their functional significance but has remained theoretically poorly understood. We use phenomenological model of delay-coupled oscillators with increasing degree of topological complexity to identify underlying principles by which the spatio-temporal structure of the brain governs the phase lags between oscillatory activity at distant regions. Phase relations and their regions of stability are derived and numerically confirmed for two oscillators and for networks with randomly distributed or clustered bimodal delays, as a first approximation for the brain structural connectivity. Besides in-phase, clustered delays can induce anti-phase synchronization for certain frequencies, while the sign of the lags is determined by the natural frequencies and by the inhomogeneous network interactions. For in-phase synchronization faster oscillators always phase lead, while stronger connected nodes lag behind the weaker during frequency depression, which consistently arises for in-silico results. If nodes are in antiphase regime, then a distance Pi is added to the in-phase trends. The statistics of the phases is calculated from the phase locking values (PLV), as in many empirical studies, and we scrutinize the method's impact. The choice of surrogates do not affects the mean of the observed phase lags, but higher significance levels that are generated by some surrogates, cause decreased variance and might fail to detect the generally weaker coherence of the interhemispheric links. These links are also affected by the non-stationary and intermittent synchronization, which causes multimodal phase lags that can be misleading if averaged. Taken together, the results describe quantitatively the impact of the spatio-temporal connectivity of the brain to the synchronization patterns between brain regions, and to uncover mechanisms through which the spatio-temporal structure of the brain renders phases to be distributed around 0 and Pi.Peer reviewe

    metastability and its dynamical cortical core

    Get PDF
    In the human brain, spontaneous activity during resting state consists of rapid transitions between functional network states over time but the underlying mechanisms are not understood. We use connectome based computational brain network modeling to reveal fundamental principles of how the human brain generates large-scale activity observable by noninvasive neuroimaging. We used structural and functional neuroimaging data to construct whole- brain models. With this novel approach, we reveal that the human brain during resting state operates at maximum metastability, i.e. in a state of maximum network switching. In addition, we investigate cortical heterogeneity across areas. Optimization of the spectral characteristics of each local brain region revealed the dynamical cortical core of the human brain, which is driving the activity of the rest of the whole brain. Brain network modelling goes beyond correlational neuroimaging analysis and reveals non-trivial network mechanisms underlying non-invasive observations. Our novel findings significantly pertain to the important role of computational connectomics in understanding principles of brain function

    Predicting the spatiotemporal diversity of seizure propagation and termination in human focal epilepsy

    Get PDF
    Recent studies have shown that seizures can spread and terminate across brain areas via a rich diversity of spatiotemporal patterns. In particular, while the location of the seizure onset area is usually in-variant across seizures in a same patient, the source of traveling (2-3 Hz) spike-and-wave discharges (SWDs) during seizures can either move with the slower propagating ictal wavefront or remain stationary at the seizure onset area. In addition, although most focal seizures terminate quasi-synchronously across brain areas, some evolve into distinct ictal clusters and terminate asynchronously. To provide a unifying perspective on the observed diversity of spatiotemporal dynamics for seizure spread and termination, we introduce here the Epileptor neural field model. Two mechanisms play an essential role. First, while the slow ictal wavefront propagates as a front in excitable neural media, the faster SWDs propagation results from coupled-oscillator dynamics. Second, multiple time scales interact during seizure spread, allowing for low-voltage fast-activity (>10 Hz) to hamper seizure spread and for SWD propagation to affect the way a seizure terminates. These dynamics, together with variations in short and long-range connectivity strength, play a central role on seizure spread, maintenance and termination. We demonstrate how Epileptor field models incorporating the above mechanisms predict the previously reported diversity in seizure spread patterns. Furthermore, we confirm the predictions for synchronous or asynchronous (clustered) seizure termination in human seizures recorded via stereotactic EEG. Our new insights into seizure spatiotemporal dynamics may also contribute to the development of new closed-loop neuromodulation therapies for focal epilepsy.Comment: 10 pages + 9 pages Supporting Information (SI), 7 figures, 1 SI table, 7 SI figure

    The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields

    Get PDF
    The cortex is a complex system, characterized by its dynamics and architecture, which underlie many functions such as action, perception, learning, language, and cognition. Its structural architecture has been studied for more than a hundred years; however, its dynamics have been addressed much less thoroughly. In this paper, we review and integrate, in a unifying framework, a variety of computational approaches that have been used to characterize the dynamics of the cortex, as evidenced at different levels of measurement. Computational models at different space–time scales help us understand the fundamental mechanisms that underpin neural processes and relate these processes to neuroscience data. Modeling at the single neuron level is necessary because this is the level at which information is exchanged between the computing elements of the brain; the neurons. Mesoscopic models tell us how neural elements interact to yield emergent behavior at the level of microcolumns and cortical columns. Macroscopic models can inform us about whole brain dynamics and interactions between large-scale neural systems such as cortical regions, the thalamus, and brain stem. Each level of description relates uniquely to neuroscience data, from single-unit recordings, through local field potentials to functional magnetic resonance imaging (fMRI), electroencephalogram (EEG), and magnetoencephalogram (MEG). Models of the cortex can establish which types of large-scale neuronal networks can perform computations and characterize their emergent properties. Mean-field and related formulations of dynamics also play an essential and complementary role as forward models that can be inverted given empirical data. This makes dynamic models critical in integrating theory and experiments. We argue that elaborating principled and informed models is a prerequisite for grounding empirical neuroscience in a cogent theoretical framework, commensurate with the achievements in the physical sciences

    An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data

    Get PDF
    AbstractLarge amounts of multimodal neuroimaging data are acquired every year worldwide. In order to extract high-dimensional information for computational neuroscience applications standardized data fusion and efficient reduction into integrative data structures are required. Such self-consistent multimodal data sets can be used for computational brain modeling to constrain models with individual measurable features of the brain, such as done with The Virtual Brain (TVB). TVB is a simulation platform that uses empirical structural and functional data to build full brain models of individual humans. For convenient model construction, we developed a processing pipeline for structural, functional and diffusion-weighted magnetic resonance imaging (MRI) and optionally electroencephalography (EEG) data. The pipeline combines several state-of-the-art neuroinformatics tools to generate subject-specific cortical and subcortical parcellations, surface-tessellations, structural and functional connectomes, lead field matrices, electrical source activity estimates and region-wise aggregated blood oxygen level dependent (BOLD) functional MRI (fMRI) time-series. The output files of the pipeline can be directly uploaded to TVB to create and simulate individualized large-scale network models that incorporate intra- and intercortical interaction on the basis of cortical surface triangulations and white matter tractograpy. We detail the pitfalls of the individual processing streams and discuss ways of validation. With the pipeline we also introduce novel ways of estimating the transmission strengths of fiber tracts in whole-brain structural connectivity (SC) networks and compare the outcomes of different tractography or parcellation approaches. We tested the functionality of the pipeline on 50 multimodal data sets. In order to quantify the robustness of the connectome extraction part of the pipeline we computed several metrics that quantify its rescan reliability and compared them to other tractography approaches. Together with the pipeline we present several principles to guide future efforts to standardize brain model construction. The code of the pipeline and the fully processed data sets are made available to the public via The Virtual Brain website (thevirtualbrain.org) and via github (https://github.com/BrainModes/TVB-empirical-data-pipeline). Furthermore, the pipeline can be directly used with High Performance Computing (HPC) resources on the Neuroscience Gateway Portal (http://www.nsgportal.org) through a convenient web-interface

    Selective activation of resting state networks following focal stimulation in a connectome- based network model of the human brain

    Full text link
    Imaging studies suggest that the functional connectivity patterns of resting state networks (RS-networks) reflect underlying structural connectivity (SC). If the connectome constrains how brain areas are functionally connected, the stimulation of specific brain areas should produce a characteristic wave of activity ultimately resolving into RS-networks. To systematically test this hypothesis, we use a connectome-based network model of the human brain with detailed realistic SC. We systematically activate all possible thalamic and cortical areas with focal stimulation patterns and confirm that the stimulation of specific areas evokes network patterns that closely resemble RS-networks. For some sites, one or no RS-network is engaged, whereas for other sites more than one RS-network may evolve. Our results confirm that the brain is operating at the edge of criticality, wherein stimulation produces a cascade of functional network recruitments, collapsing onto a smaller subspace that is constrained in part by the anatomical local and long-range SCs. We suggest that information flow, and subsequent cognitive processing, follows specific routes imposed by connectome features, and that these routes explain the emergence of RS-networks. Since brain stimulation can be used to diagnose/treat neurological disorders, we provide a look-up table showing which areas need to be stimulated to activate specific RS-networks.Comment: 25 pages (in total), 7 figures, 2 table

    audiology 2012

    Get PDF
    <p>All other parameters as in <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1000092#pcbi-1000092-g010" target="_blank">Figure 10</a>. (A) Individual mean synaptic currents of all nonsensory nodes. (B) Total synaptic currents averaged across the nonsensory sheet. The injection of the externally evoked sensory currents into the prior activity actually has a slightly desynchronizing effect.</p
    • …
    corecore